Decision-making strategy for automatic recognition of sedation states

Authors

Keywords:

electroencephalographic signals, anesthetic sedation states, automatic recognition, support vector machines

Abstract

Introduction: Anesthesiology is the medical specialty concerned with the specific care of patients during surgical and intensive care procedures. This specialty, based on scientific and technological advances, has incorporated the use of electroencephalographic monitoring, facilitating the continuous control in the use of anesthesia for patient´s sedation states during surgeries, with an adequate concentration of drugs.

Objective: proposal for a classification strategy for automatic recognition of three sedation states in electroencephalographic signals.

Methods: we used, with written informed consent, the electroencephalographic records of 27 patients undergoing abdominal surgery, excluding those with a history of epilepsy, cerebrovascular disease and other neurological conditions. A total of 12 drugs to produce anesthesia and two muscle relaxants with 19 electrodes, mounted according to the International System 10 -20, were applied. Artifacts in the records were eliminated and artificial intelligence techniques were applied to perform automatic recognition of sedation states.

Results: a strategy based on the use of support vector machines with a multiclass algorithm One-against-Rest and the Cosine Similarity metric was proposed to perform the automatic recognition of three sedation states: deep, moderate and light, in signals recorded by the frontal channel F4 and the occipital channels O1 and O2. A comparison was carried out between the proposal showed and other classification methods.

Conclusions: a balanced accuracy of 92.67% is computed about the recognition of the three states of sedation in the signals recorded by the electroencephalographic channel F4, which helps in a better anesthetic monitoring process.

Downloads

Download data is not yet available.

Author Biographies

Tahimy González-Rubio, Universidad de Oriente. Facultad de Ingeniería en Telecomunicaciones, Informática y Biomédica, Santiago de Cuba

Licenciada en Ciencias de la Computación. Máster en Informática Aplicada. Asistente.

Yissel Rodríguez-Aldana, Universidad de Oriente. Centro de Estudios de Neurociencias, Procesamiento de Imágenes y Señales, Santiago de Cuba

Doctora en Ingeniería Biomédica. Ingeniera en Ciencias Informáticas. Máster en Ingeniería Biomédica. Profesora Titular.

Enrique Marañon-Reyes, Universidad de Oriente. Centro de Estudios de Neurociencias, Procesamiento de Imágenes y Señales, Santiago de Cuba

Doctor en Ciencias Técnicas. Ingeniero en Telecomunicaciones.Profesor Titular.

Arquímedes Montoya-Pedrón, Hospital General Docente “Dr. Juan Bruno Zayas Alfonso", Santiago de Cuba

Doctor en Ciencias Médicas. Especialista de Segundo Grado en Neurofisiología Clínica. Profesor e Investigador Titular.

References

1. İnce R, Adanır SS, Sevmez F. The inventor of electroencephalography (EEG): Hans Berger (1873–1941). Childs Nerv Syst [Internet]. 2021 [citado 11 Ene 2022]; 37. DOI: https://doi.org/10.1007/s00381-020-04564-z

2. Gajbhiye P, Tripathy RK, Bhattacharyya A, Pachori RB. Novel Approaches for the Removal of Motion Artifact From EEG Recordings. IEEE Sensors J [Internet]. 2019 [citado 11 Ene 2022]; 19(22):10600-10608. DOI: http://dx.doi.org/10.1109/JSEN.2019.2931727

3. Bisht A, Kaur C, Singh P. Recent Advances in Artifact Removal Techniques for EEG Signal Processing. Intelligent Communication, Control and Devices. Adv Intel Sys Comp [Internet]. 2020 [citado 13 Ene 2022]; 989:[aproximadamente 8 p.]. DOI: https://doi.org/10.1007/978-981-13-8618-3_41

4. Afshani F, Shalbaf A, Shalbaf R, et al. Frontal–temporal functional connectivity of EEG signal by standardized permutation mutual information during anesthesia. Cogn Neurodyn [Internet]. 2019 [citado 13 Ene 2022]; 13:531-540. DOI: https://doi.org/10.1007/s11571-019-09553-w

5. Vlisides PE, Bel-Bahar T, Nelson A. Subanaesthetic ketamine and altered states of consciousness in humans. Brit J Anaesth [Internet]. 2018 [citado 11 Ene 2022]; 121(1):249-259. DOI: https://doi.org/10.1016/j.bja.2018.03.011

6. Moraes SB, Tarnal V, Vanini G, Bel-Behar T, et al. Network Efficiency and Posterior Alpha Patterns Are Markers of Recovery from General Anesthesia: A High-Density Electroencephalography Study in Healthy Volunteers. Fron Comp Neurosc [Internet]. 2017 [citado 13 Ene 2022]; 11(328):8. DOI: https://doi.org/10.3389/fnhum.2017.00328

7. Rathee D, Cecotti H, Prasad G. Propofol-induced sedation diminishes the strength of frontal-parietal-occipital EEG network. En: 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2017. Disponible en: https://ieeexplore.ieee.org/abstract/document/8037847

8. Hambrecht-Wiedbusch VS, Li D, Mashour GA. Administration of Subanesthetic Ketamine during Isoflurane Anesthesia Induces Burst Suppression but Accelerates Recovery. Anesthesiol [Internet]. 2017 [citado 5 Dic 2021]; 126(3):482-491. DOI: https://doi.org/10.1097/aln.0000000000001512

9. Kreuzer M. EEG Based Monitoring of General Anesthesia: Taking the Next Steps. Fron Comp Neurosc [Internet]. 2017 [citado 5 Dic 2021]; 11(56):7. DOI: https://doi.org/10.3389/fncom.2017.00056

10.Sanders RD, Banks MI, Darracq M, Moran R, et al. Propofol-induced unresponsiveness is associated with impaired feedforward connectivity in cortical hierarchy. Brit J Anaesthesia [Internet]. 2018 [citado 13 Ene 2022]; 121(5):1084-1096. DOI: https://doi.org/10.1016/j.bja.2018.07.006

11.Soldevilla DL. On the Physiological Modulation and Potential Mechanisms Underlying Parieto-Occipital Alpha Oscillations. Fron Comp Neurosc [Internet]. 2018 [citado 11 Ene 2022]; 12(23):19. Disponible en: https://doi.org/10.3389%2Ffncom.2018.00023

12.Rodríguez Y, González T, Marañón E, Montoya A, Sanabria F. Aplicación de corrección de artefactos en el electroencefalograma para monitoreo anestésico. Rev Cubana Neurol Neurocir [Internet]. 2015 [citado 11 Ene 2022]; 5(1):S9-S14. Disponible en: http://revneuro.sld.cu/index.php/neu/article/view/179

13.Kubat M. An Introduction to Machine Learning. 1ed. 2015; 291.

Published

2022-06-20

How to Cite

1.
González-Rubio T, Rodríguez-Aldana Y, Marañon-Reyes E, Montoya-Pedrón A. Decision-making strategy for automatic recognition of sedation states. Rev Inf Cient [Internet]. 2022 Jun. 20 [cited 2025 Apr. 3];101(3 Especial):e3766. Available from: https://revinfcientifica.sld.cu/index.php/ric/article/view/3766

Issue

Section

Original Articles