Estratégia de tomada de decisão para reconhecimento automático de estados de sedação
Palavras-chave:
sinais eletroencefalográficos, estados de sedação anestésica, reconhecimento automático, máquinas de vetor de suporteResumo
Introdução: a Anestesiologia é a especialidade médica dedicada ao atendimento específico de pacientes durante procedimentos cirúrgicos e em terapia intensiva. Essa especialidade, baseada nos avanços científicos e tecnológicos, incorporou o uso da monitorização eletroencefalográfica, facilitando o controle contínuo dos estados de sedação anestésica durante as cirurgias, com concentração adequada de fármacos.
Objetivo: propor uma estratégia de classificação para o reconhecimento automático de três estados de sedação anestésica em sinais eletroencefalográficos.
Método: foram utilizados registros eletroencefalográficos de 27 pacientes submetidos à cirurgia abdominal com consentimento informado por escrito, excluindo aqueles com histórico de epilepsia, doenças cerebrovasculares e outras condições neurológicas. Um total de 12 drogas anestésicas e dois relaxantes musculares foram aplicados com um conjunto de 19 eletrodos de acordo com o Sistema Internacional 10-20. Artefatos nos prontuários foram removidos e técnicas de inteligência artificial foram aplicadas para realizar o reconhecimento automático dos estados de sedação.
Resultados: foi proposta uma estratégia baseada no uso de máquinas de vetores de suporte com algoritmo One-Against-Rest multiclasse e a métrica Cosine Similarity para realizar o reconhecimento automático de três estados de sedação: profundo, moderado e leve, em sinais registrados pelo canal frontal F4 e os canais occipitais O1 e O2. Foi feita uma comparação da proposta com outros métodos de classificação.
Conclusões: uma acurácia equilibrada de 92,67% é computada no reconhecimento dos três estados de sedação nos sinais registrados pelo canal eletroencefalográfico F4, o que favorece o desenvolvimento da monitorização anestésica.
Downloads
Referências
2. Gajbhiye P, Tripathy RK, Bhattacharyya A, Pachori RB. Novel Approaches for the Removal of Motion Artifact From EEG Recordings. IEEE Sensors J [Internet]. 2019 [citado 11 Ene 2022]; 19(22):10600-10608. DOI: http://dx.doi.org/10.1109/JSEN.2019.2931727
3. Bisht A, Kaur C, Singh P. Recent Advances in Artifact Removal Techniques for EEG Signal Processing. Intelligent Communication, Control and Devices. Adv Intel Sys Comp [Internet]. 2020 [citado 13 Ene 2022]; 989:[aproximadamente 8 p.]. DOI: https://doi.org/10.1007/978-981-13-8618-3_41
4. Afshani F, Shalbaf A, Shalbaf R, et al. Frontal–temporal functional connectivity of EEG signal by standardized permutation mutual information during anesthesia. Cogn Neurodyn [Internet]. 2019 [citado 13 Ene 2022]; 13:531-540. DOI: https://doi.org/10.1007/s11571-019-09553-w
5. Vlisides PE, Bel-Bahar T, Nelson A. Subanaesthetic ketamine and altered states of consciousness in humans. Brit J Anaesth [Internet]. 2018 [citado 11 Ene 2022]; 121(1):249-259. DOI: https://doi.org/10.1016/j.bja.2018.03.011
6. Moraes SB, Tarnal V, Vanini G, Bel-Behar T, et al. Network Efficiency and Posterior Alpha Patterns Are Markers of Recovery from General Anesthesia: A High-Density Electroencephalography Study in Healthy Volunteers. Fron Comp Neurosc [Internet]. 2017 [citado 13 Ene 2022]; 11(328):8. DOI: https://doi.org/10.3389/fnhum.2017.00328
7. Rathee D, Cecotti H, Prasad G. Propofol-induced sedation diminishes the strength of frontal-parietal-occipital EEG network. En: 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2017. Disponible en: https://ieeexplore.ieee.org/abstract/document/8037847
8. Hambrecht-Wiedbusch VS, Li D, Mashour GA. Administration of Subanesthetic Ketamine during Isoflurane Anesthesia Induces Burst Suppression but Accelerates Recovery. Anesthesiol [Internet]. 2017 [citado 5 Dic 2021]; 126(3):482-491. DOI: https://doi.org/10.1097/aln.0000000000001512
9. Kreuzer M. EEG Based Monitoring of General Anesthesia: Taking the Next Steps. Fron Comp Neurosc [Internet]. 2017 [citado 5 Dic 2021]; 11(56):7. DOI: https://doi.org/10.3389/fncom.2017.00056
10.Sanders RD, Banks MI, Darracq M, Moran R, et al. Propofol-induced unresponsiveness is associated with impaired feedforward connectivity in cortical hierarchy. Brit J Anaesthesia [Internet]. 2018 [citado 13 Ene 2022]; 121(5):1084-1096. DOI: https://doi.org/10.1016/j.bja.2018.07.006
11.Soldevilla DL. On the Physiological Modulation and Potential Mechanisms Underlying Parieto-Occipital Alpha Oscillations. Fron Comp Neurosc [Internet]. 2018 [citado 11 Ene 2022]; 12(23):19. Disponible en: https://doi.org/10.3389%2Ffncom.2018.00023
12.Rodríguez Y, González T, Marañón E, Montoya A, Sanabria F. Aplicación de corrección de artefactos en el electroencefalograma para monitoreo anestésico. Rev Cubana Neurol Neurocir [Internet]. 2015 [citado 11 Ene 2022]; 5(1):S9-S14. Disponible en: http://revneuro.sld.cu/index.php/neu/article/view/179
13.Kubat M. An Introduction to Machine Learning. 1ed. 2015; 291.