Mobility in cities of Peru during the COVID-19 pandemic
Keywords:
mobility reports, Google, Peru, trends,Abstract
Introduction: Real-time mobility data from Wuhan, China, and detailed case data, including travel history, was of vital importance for the control of COVID-19, in order to determine the impact of control measures.
Objective: to analyze the cases reported in the five most affected regions by COVID-19 in Peru, and its correlation with mobility data.
Method: data of the confirmed cases of COVID-19 obtained from the Centro Nacional de Epidemiologia, Prevención y Control de Enfermedades de Perú (National Center for Epidemiology, Prevention and Control of Diseases of Peru) (https://www.dge.gob.pe/) in the period from 6 From March until August 17, 2020 were included; and the regions with the highest number of cases (CDC-Peru) (Arequipa, Callao, Lima, Lambayeque and Piura) were selected. The mobility data was obtained from the Local Mobility Reports (Community Mobility Reports-Google Mobility Reports) (https://www.google.com/covid19/mobility/) of Peru and downloaded in a CSV file. The categories included in the mobility reports were: retail stores and leisure, public transport stations, workplaces and residential areas.
Results: 165 data found in Google Mobility Reports were analyzed; these having a daily data frequency. The same amount of data was obtained from the CDC-Peru. A drop was observed in all places studied except for residential areas in the country. Regarding associations, a negative correlation was found only in residential areas.
Conclusion: there was a reduction in mobility due to quarantine, and staying at home is a factor to avoid infections.
Downloads
References
2. Kraemer MUG, Yang CH, Gutierrez B, Wu CH, Klein B, Pigott DM, et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science (80-) [Internet]. 2020 May [citado 28 Oct 2020]; 368(6490):493-7. Disponible en: https://science.sciencemag.org/content/368/6490/493
3. Lau H, Khosrawipour V, Kocbach P, Mikolajczyk A, Schubert J, Bania J, et al. The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. J Travel Med [Internet]. 2020 May 18 [citado 28 Oct 2020]; 27(3):1-7. Disponible en: https://academic.oup.com/jtm/article/27/3/taaa037/5808003
4. Sardar T, Nadim SS, Rana S, Chattopadhyay J. Assessment of lockdown effect in some states and overall India: A predictive mathematical study on COVID-19 outbreak. Chaos, Solitons and Fractals. 2020 Oct 1;139:110078.
5. Badr HS, Du H, Marshall M, Dong E, Squire MM, Gardner LM. Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. Lancet Infect Dis. 2020 Nov; 20(11):1247-54.
6. Iglesias-Osores S, Saavedra-Camacho JL. Can Behavioral Science Help Us Fight COVID-19. Int J Prev Med [Internet]. 2020 Jul 22;11(108):1. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33088436
7. Iglesias-Osores S, Acosta-Quiroz J. Efectos en los sistemas de salud de la pandemia por COVID-19. Rev Exp Med Hosp Reg Lambayeque [Internet]. 2020 Aug 25 [citado 28 Oct 2020]; 6(2):120-1. Disponible en: http://rem.hrlamb.gob.pe/index.php/REM/article/view/444
8. Iglesias-Osores S. Transmission and prevention of SARS-CoV-2 (COVID-19) in prisons. Rev Esp Sanid Penit [Internet]. 2020 Jun 11 [citado 28 Oct 2020]; 22(2):87-90. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1575-06202020000200007&lng=es&nrm=iso&tlng=en
9. Cartenì A, Di Francesco L, Martino M. How mobility habits influenced the spread of the COVID-19 pandemic: Results from the Italian case study. Sci Total Environ. 2020 Nov 1; 741:140489.
10.Iglesias-Osores S. Importancia del aislamiento social en la pandemia de la COVID-19. Rev Méd Hered [Internet]. 2020 Oct 16 [citado 28 Oct 2020]; 31(3):205-6. Disponible en: https://revistas.upch.edu.pe/index.php/RMH/article/view/3814/4294
11.Pepe E, Bajardi P, Gauvin L, Privitera F, Lake B, Cattuto C, et al. COVID-19 outbreak response, a dataset to assess mobility changes in Italy following national lockdown. Sci Data [Internet]. 2020 Dec 1 [citado 28 Oct 2020]; 7(1):1-7. DOI: https://doi.org/10.1038/s41597-020-00575-2
12.Engle S, Stromme J, Zhou A. Staying at Home: Mobility Effects of COVID-19. SSRN Electron J [Internet]. 2020 Apr 16 [citado 28 Oct 2020]; Disponible en: https://papers.ssrn.com/abstract=3565703
13.Buckee CO, Balsari S, Chan J, Crosas M, Dominici F, Gasser U, et al. Aggregated mobility data could help fight COVID-19. Science (80-) [Internet]. 2020 Mar 23 [citado 6 Abr 2020]: eabb8021. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/32205458






