Mobility in cities of Peru during the COVID-19 pandemic

Authors

Keywords:

mobility reports, Google, Peru, trends,

Abstract

Introduction: Real-time mobility data from Wuhan, China, and detailed case data, including travel history, was of vital importance for the control of COVID-19, in order to determine the impact of control measures.

Objective: to analyze the cases reported in the five most affected regions by COVID-19 in Peru, and its correlation with mobility data.

Method: data of the confirmed cases of COVID-19 obtained from the Centro Nacional de Epidemiologia, Prevención y Control de Enfermedades de Perú (National Center for Epidemiology, Prevention and Control of Diseases of Peru) (https://www.dge.gob.pe/) in the period from 6 From March until August 17, 2020 were included; and the regions with the highest number of cases (CDC-Peru) (Arequipa, Callao, Lima, Lambayeque and Piura) were selected. The mobility data was obtained from the Local Mobility Reports (Community Mobility Reports-Google Mobility Reports) (https://www.google.com/covid19/mobility/) of Peru and downloaded in a CSV file. The categories included in the mobility reports were: retail stores and leisure, public transport stations, workplaces and residential areas.

Results: 165 data found in Google Mobility Reports were analyzed; these having a daily data frequency. The same amount of data was obtained from the CDC-Peru. A drop was observed in all places studied except for residential areas in the country. Regarding associations, a negative correlation was found only in residential areas.

Conclusion: there was a reduction in mobility due to quarantine, and staying at home is a factor to avoid infections.

Downloads

Download data is not yet available.

Author Biographies

Johnny Leandro Saavedra-Camacho, Universidad Nacional "Pedro Ruiz Gallo"

Biólogo.

Sebastian Iglesias-Osores, Universidad Nacional "Pedro Ruiz Gallo"

Biólogo.

Miguel Alcántara-Mimbela, Universidad Nacional "Pedro Ruiz Gallo"

Biólogo.

Lizbeth Maribel Córdova-Rojas, Universidad Nacional de Jaén

Bióloga.

References

1. Iglesias-Osores S. Reservorios de murciélagos relacionados con el SARS-CoV-2. Rev Cubana Med Mil [Internet]. 2020 [citado 18 Sep 2020]; 49(3):e0200738. Disponible en: http://www.revmedmilitar.sld.cu/index.php/mil/article/view/738

2. Kraemer MUG, Yang CH, Gutierrez B, Wu CH, Klein B, Pigott DM, et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science (80-) [Internet]. 2020 May [citado 28 Oct 2020]; 368(6490):493-7. Disponible en: https://science.sciencemag.org/content/368/6490/493

3. Lau H, Khosrawipour V, Kocbach P, Mikolajczyk A, Schubert J, Bania J, et al. The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. J Travel Med [Internet]. 2020 May 18 [citado 28 Oct 2020]; 27(3):1-7. Disponible en: https://academic.oup.com/jtm/article/27/3/taaa037/5808003

4. Sardar T, Nadim SS, Rana S, Chattopadhyay J. Assessment of lockdown effect in some states and overall India: A predictive mathematical study on COVID-19 outbreak. Chaos, Solitons and Fractals. 2020 Oct 1;139:110078.

5. Badr HS, Du H, Marshall M, Dong E, Squire MM, Gardner LM. Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. Lancet Infect Dis. 2020 Nov; 20(11):1247-54.

6. Iglesias-Osores S, Saavedra-Camacho JL. Can Behavioral Science Help Us Fight COVID-19. Int J Prev Med [Internet]. 2020 Jul 22;11(108):1. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33088436

7. Iglesias-Osores S, Acosta-Quiroz J. Efectos en los sistemas de salud de la pandemia por COVID-19. Rev Exp Med Hosp Reg Lambayeque [Internet]. 2020 Aug 25 [citado 28 Oct 2020]; 6(2):120-1. Disponible en: http://rem.hrlamb.gob.pe/index.php/REM/article/view/444

8. Iglesias-Osores S. Transmission and prevention of SARS-CoV-2 (COVID-19) in prisons. Rev Esp Sanid Penit [Internet]. 2020 Jun 11 [citado 28 Oct 2020]; 22(2):87-90. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1575-06202020000200007&lng=es&nrm=iso&tlng=en

9. Cartenì A, Di Francesco L, Martino M. How mobility habits influenced the spread of the COVID-19 pandemic: Results from the Italian case study. Sci Total Environ. 2020 Nov 1; 741:140489.

10.Iglesias-Osores S. Importancia del aislamiento social en la pandemia de la COVID-19. Rev Méd Hered [Internet]. 2020 Oct 16 [citado 28 Oct 2020]; 31(3):205-6. Disponible en: https://revistas.upch.edu.pe/index.php/RMH/article/view/3814/4294

11.Pepe E, Bajardi P, Gauvin L, Privitera F, Lake B, Cattuto C, et al. COVID-19 outbreak response, a dataset to assess mobility changes in Italy following national lockdown. Sci Data [Internet]. 2020 Dec 1 [citado 28 Oct 2020]; 7(1):1-7. DOI: https://doi.org/10.1038/s41597-020-00575-2

12.Engle S, Stromme J, Zhou A. Staying at Home: Mobility Effects of COVID-19. SSRN Electron J [Internet]. 2020 Apr 16 [citado 28 Oct 2020]; Disponible en: https://papers.ssrn.com/abstract=3565703

13.Buckee CO, Balsari S, Chan J, Crosas M, Dominici F, Gasser U, et al. Aggregated mobility data could help fight COVID-19. Science (80-) [Internet]. 2020 Mar 23 [citado 6 Abr 2020]: eabb8021. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/32205458

Published

2021-02-05

How to Cite

1.
Saavedra-Camacho JL, Iglesias-Osores S, Alcántara-Mimbela M, Córdova-Rojas LM. Mobility in cities of Peru during the COVID-19 pandemic. Rev Inf Cient [Internet]. 2021 Feb. 5 [cited 2026 Jan. 24];100(1):e3164. Available from: https://revinfcientifica.sld.cu/index.php/ric/article/view/3164

Issue

Section

RESEARCH ARTICLES