Android application for wireless acquisition and visualization of biomedical signals
Keywords:
biomedical signals, wireless monitoring, Android, visualizationAbstract
Introduction: technological advances experienced by phones and tablets with Android operating system have enabled the development of countless applications in the field of medicine. As far as we know, there is not reported in our health system the use of a portable device that allows the specialist to wirelessly monitor remotely the biomedical signals associated with the patient.
Objective: development of an Android application (as a tool) that can be adapted to multiple wireless monitoring systems in order to capture, visualize and store biomedical signals.
Method: the general architecture of the wireless communication system that integrates the tool is shown and the software design of the tool and the interaction diagram of the five activities that compose it are proposed: “Menu”, “Patients”, “Configuration”, “Scanner”, “Graph”.
Results: different screens and functionalities of the application were shown, compatibles for two Cuban medical devices (and modes): Biomedical Measurement System for Vestibular Exploration (Reception) and the Wireless Electrocardiographic Monitoring System for Android devices (operates in Transmission/Reception mode).
Conclusions: the application provides a simple and intuitive interface, which facilitates interaction with the user. Its qualitative evaluation through rapid tests showed excellent results in both cases.
Downloads
References
2. Almario A, Amin O, Oyola K, Santis C. Mini-lengua electrónica portátil controlada por un teléfono inteligente (Smartphone). RIELAC [Internet]. 2018 [citado 2 Ene 2022]; 37(3):1-9. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1815-59282016000300001
3. Ramírez O, Cutiño W, Díaz M, Crispi A. Development of Healthcare Applications using Facilities available in modern Mobile Devices. RIELAC [Internet]. 2017 [citado 2 Ene 2022]; 37(3):10-20. Disponible en: http://scielo.sld.cu/pdf/eac/v37n3/eac02316.pdf
4. Hernández B, Herranz A, Domínguez D, Morlán C, Gómez A. Caracterización de la adquisición de nistagmos asociados al estudio del sistema vestibular. RCI [Internet]. 2016 [citado 9 Ene 2022]; 7(3):5-14. Disponible en: http://rci.cujae.edu.cu/index.php/rci/article/view/520
5. Doblado D, Bárzaga A, Castellanos A, Soler Y. Diseño de un módulo para la adquisición y transmisión inalámbrica de bioseñales. Rev Telem [Internet]. 2017 [citado 12 Ene 2022]; 16(2):39-53. Disponible en: http://revistatelematica.cujae.edu.cu/index.php/tele/article/view/261
6. Smith-Colás R, Cobo-Alea R, Vázquez-Seisdedos C. Diseño de un sistema inalámbrico de monitorización electrocardiográfica para dispositivos Android. RIELAC [Internet]. 2020 [citado 9 Ene 2022]; 41:63-79. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1815-59282020000200063
7. Goralski W. The Illustrated Network How TCP/IP Works in a Modern Network. 2ed. Estados Unidos: Elsevier Inc; 2019.
8. Cisco Networking Academy. Connecting Networks. v.6. Estados Unidos: Cisco Press; 2018.
9. Niveditha V, Ananthan T. Improving Acknowledgement in Android Application. J Comput Theor Nanosc [Internet]. 2019 [citado 10 Feb 2022]; 16(5):2104-2107. DOI: https://doi.org/10.1166/jctn.2019.7856
10.Sánchez L. Protocolo de comunicación TCP/IP y ethernet. Lima, Perú; 2018.
11.IEEE Sa Standards Association. IEEE Standard for Information Technology--Telecommunications and Information Exchange between Systems - Local and Metropolitan Area Networks--Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. standards.ieee.org. 2020. [citado 2 Ene 2020]. Disponible en: https://standards.ieee.org/standard/802_11-2020.html
12.Kim D, Solomon M. Fundamentals of Information Systems Security. 3ed. Estados Unidos: Jones & Bartlett Learning; 2018.