Percepción del impacto del aprendizaje de la Inteligencia Artificial en la formación de estudiantes universitarios de la salud
DOI:
https://doi.org/10.5281/zenodo.15392016Palabras clave:
aprendizaje, diagnóstico, Inteligencia Artificial, estudiantes universitarios, Ciencias de la SaludResumen
Introducción: la inteligencia artificial (IA) está transformando la salud y su impacto en la formación de futuros profesionales es necesaria. Objetivo: evaluar la percepción del impacto de la IA en estudiantes universitarios de ciencias de la salud. Método: se realizó un estudio descriptivo, observacional y transversal en una población de 1 153 estudiantes universitarios de ciencias de la salud, del cual resultó una muestra de 561 estudiantes de diversas carreras (Enfermería, Farmacia y Bioquímica, Odontología y Medicina Veterinaria y Zootecnia) de la Universidad Nacional San Luis Gonzaga de Ica, Perú. Se midió su percepción sobre la influencia de la IA en diagnóstico, aprendizaje personalizado, ética y el impacto general en su formación con la aplicación de un cuestionario validado de doce preguntas en una escala Likert de 5 puntos. Los datos se analizaron mediante estadística descriptiva y análisis de frecuencias. Resultados: la mayoría de los estudiantes percibieron una alta influencia de la IA en la mejora del diagnóstico (65,2 %), la personalización del aprendizaje (66,5 %) y los desafíos éticos y legales (76,3 %). Más de dos tercios consideraron que la IA tiene un alto impacto en su aprendizaje. Conclusiones: los estudiantes de ciencias de la salud de la Universidad Nacional San Luis Gonzaga de Ica, Perú, tienen una percepción positiva del potencial de la IA en su formación. Es fundamental desarrollar estrategias educativas que integren eficazmente la IA en el currículo de salud.
Descargas
Citas
Tauqir S. Is Artificial Intelligence Transforming Dentistry Today? J Gandhara Med Dent Sci [Internet]. 2021 [citado 11 Ene 2025]; 8(4). DOI: https://doi.org/10.37762/JGMDS.8-4.263
Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Brief bioinform [Internet]. 2018 [citado 9 Ene 2025]; 19(6):1236–1246. DOI: https://doi.org/10.1093/bib/bbx044
Xiao C, Choi E, Sun J. Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. JAMIA [Internet]. 2018 [citado 9 Ene 2025]; 25(10):1419–1428. DOI: https://doi.org/10.1093/jamia/ocy068
Ravis Rao A. “Smarter smiles” – How artificial intelligence is revolutionizing dentistry. J Academy Dent Educ [Internet]. 2023 [citado 9 Ene 2025]; 9(1):1-3. DOI: https://doi.org/10.25259/JADE_42_2023
Siva Shankar S, Kumar Vaidya K, Kumari Poovani S, Leveraging artificial intelligence in dentistry. IJSR [Internet]. 2023 [citado 9 Ene 2025]; 12(1). DOI: https://doi.org/10.36106/ijsr/6212821
Bulatova G, Kusnoto B, Grace V, Tsay TP, Avenetti DM, Castelli Sanchez FJ. Assessment of automatic cephalometric landmark identification using artificial intelligence. Orthodontics & craniofacial research [Internet]. 2021 [citado 9 Ene 2025]; 24(S2):37–42. https://doi.org/10.1111/ocr.12542
Aggarwal D, Charan Shetty D. Artificial intelligence's emerging role in oral oncology. Acta Bioclinica [Internet]. 2022 [citado 11 Ene 2025]; 12(24):71-89. DOI: https://www.doi.org/10.53766/AcBio/2022.12.24.05
Taşsöker M, Akyüz, M. Diş Hekimliği Öğrencilerinin Oral Radyolojide Yapay Zekâ Kullanımına Bakış Açısı: Anket Çalışması: Kesitsel Araştırma. Turkiye Klinikleri J Dental Sci [Internet]. 2022 [citado 11 Ene 2025]; 28(4):778-83. DOI: https://doi.org/10.5336/dentalsci.2022-88041
Shan T, Tay FR, Gu L. Application of artificial intelligence in dentistry. Journal of dental research [Internet]. 2020 [citado 11 Ene 2025]; 100(3):232-244. DOI: https://doi.org/10.1177/0022034520969115
Yoo JH, Yeom HG, Shin W, Yun JP, Lee JH, Jeong SH, Lim HJ, Lee J, Kim BC. Deep learning-based prediction of extraction difficulty for mandibular third molars. Scientific Reports [Internet]. 2021 [citado 11 Ene 2025]; 11:1954. DOI: https://doi.org/10.1038/s41598-021-81449-4
Garcia Cantu A, Gehrung S, Krois J, Chaurasia A, Gomez Rossi J, Gaudin R, Elhennawy K, Schwendicke F. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry [Internet]. 2020 [citado 11 Ene 2025]; 100:103425. DOI: https://doi.org/10.1016/j.jdent.2020.103425
Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent [Internet]. 2018 [citado 11 Ene 2025]; 77:106–111. DOI: https://doi.org/10.1016/j.jdent.2018.07.015
Yu KH, Kohane IS. Framing the challenges of artificial intelligence in medicine. BMJ Quality & Safety [Internet]. 2019 [citado 11 Ene 2025]; 28(3):238–241. DOI: https://doi.org/10.1136/bmjqs-2018-008551
Swanwick T. Comprensión de la educación médica. En: Tim Swanwick, Kirsty Forrest, Bridget C. O'Brien. Understanding Medical Education. 3ra ed. The Association for the Study of Medical Education (ASME); 2018. p: 1–6. DOI: http://dx.doi.org/10.1002/9781119373780.ch1
Okuda Y, O´Bryson E, DeMaria Jr S, Jacobson L, Quiñones J, Shen B, Levine AI. La utilidad de la simulación en la educación médica: ¿cuál es la evidencia? Mount Sinai J Med [Internet]. 2009 [citado 11 Ene 2025]; 76(4):330–43. DOI: https://doi.org/10.1002/msj.20127
Marinopoulos SS, Dorman T, Ratanawongsa N, Wilson LM, Ashar BH, Magaziner JL, et al. Efectividad de la educación médica continua. Evid Rep Technol Assess [Internet]. 2007 [citado 11 Ene 2025]; (149):1–69. Disponible en: https://pubmed-ncbi-nlm-nih-gov.translate.goog/17764217/
Pearson ML, Hubball HT. Integración curricular en la educación farmacéutica. Am J Pharm Educ [Internet]. 2012 [citado 11 Ene 2025]; 76(10):204. DOI: https://doi.org/10.5688/ajpe7610204
Ahmed YA, Mohamed MM, Ali AF, Alasso MM, Siyad AD, Ahmad MN. Evaluating Students Perspectives on ICT Readiness in Somali Higher Education towards Teaching - Learning Acceptance [Internet]. ArXiv [preprint]. 2021 [citado 11 Ene 2025]. DOI: http://dx.doi.org/10.48550/arXiv.2108.11455
Dai Y, Liu A, Lim CP. Reconceptualizing ChatGPT as a student-driven innovation in higher education [Internet]. ScienceDirect [preprint]. 2023 [citado 11 Ene 2025]. DOI: https://doi.org/10.13140/RG.2.2.33039.05283
Hutson J, Jeevanjee T, Graaf VV, Lively J, Weber J, Weir G, et al. Artificial Intelligence and the Disruption of Higher Education: Strategies for Integrations across Disciplines. Creat Edu [Internet]. 2022 [citado 11 Ene 2025]; 13(12):3953–3980. DOI: https://doi.org/10.4236/ce.2022.1312253
Rasul T, Nair S, Kalendra D, Robin M, de Oliveira Santini F, Junio Ladeira W, et al. The role of ChatGPT in higher education: Benefits, challenges, and future research directions. J Applied Learning & Teaching [Internet]. 2023 [citado 11 Ene 2025]; 6(1). DOI: https://doi.org/10.37074/jalt.2023.6.1.29
Shapiro SC. Encyclopedia of Artificial Intelligence. 2ª ed. Wiley; 1992. vols. 1.
Wei C, Adusumilli N, Friedman A, Patel V. Perceptions of Artificial Intelligence Integration into Dermatology Clinical Practice: A Cross-Sectional Survey Study. J Drugs Dermatol [Internet]. 2022 [citado 11 Ene 2025]; 21(2):135-140. DOI: https://doi.org/10.36849/jdd.6398
Briñis Zambrano B. Beneficios y limitaciones en docentes y estudiantes universitarios salvadoreños sobre el uso de IA en procesos de enseñanza-aprendizaje. epsir [Internet]. 2024 [citado 11 Ene 2025]; 9:1-9. Disponible en: https://epsir.net/index.php/epsir/article/view/368
Sevilla Muñoz TC, Barrios Aquise M. Actitudes de los estudiantes de educación básica hacia la inteligencia artificial: Una adaptación. Rev InveCom [Internet]. 2024 [citado 11 Ene 2025]; 4(2). Disponible en: https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S2739-00632024000200128
Frías-Navarro MD, Dolz Serra L, Fuentes Durán MC, Pons Salvador G, D’Ocón Giménez A, Gómez-Frías I, et al. Actitudes hacia la Inteligencia Artificial en estudiantes universitarios. Interés, conocimientos, usos, beneficios y riesgos. INNOVAESTIC 2024. Universidad de Alicante. Alicante. 2024. DOI: http://doi.org/10.17605/OSF.IO/GMX52
Pinto Dos Santos D, Giese D, Brodehl S, Chon SH, Staab W, Kleinert R, et al. Medical students' attitude towards artificial intelligence: a multicentre survey. Euro Radiol [Internet]. 2019 [citado 11 Ene 2025]; 29(4):1640–1646. https://doi.org/10.1007/s00330-018-5601-1
Cooper G. Examining Science Education in ChatGPT: An Exploratory Study of Generative Artificial Intelligence. J Sci Edu Technol [Internet] 2023 [citado 11 Ene 2025]; 32(3):444-452. DOI: https://doi.org/10.1007/s10956-023-10039-y
Zawacki-Richter O, Marín VI, Bond M, Gouverneur F. Systematic review of research on artificial intelligence applications in higher education – where are the educators? Int J Educ Technol High Educ [Internet]. 2019 [citado 11 Ene 2025]; 16(1):39. DOI: https://doi.org/10.1186/s41239-019-0171-0
Worthing KA, Roberts M, Šlapeta J. Surveyed veterinary students in Australia find ChatGPT practical and relevant while expressing no concern about artificial intelligence replacing veterinarians. Vet Record Open [Internet]. 2024 [citado 11 Ene 2025]; 11(1):e280. DOI: https://doi.org/10.1002/vro2.80
Inglada Galiana L, Corral Gudino L, Miramontes González P. Ética e inteligencia artificial - Ethics and artificial intelligence. Rev Clínica Española [Internet]. 2024 [citado 11 Ene 2025]; 224(3):178-186. DOI: https://doi.org/10.1016/j.rce.2024.01.007
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Carmen Luisa Chauca Saavedra, Maritza Elizabeth Arones Mayuri, Virgilio Cenicio Quispe Nombreras, Santos Humberto Olivera Machado

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.