Modulação imune de macrófagos: influência do TGF-β1 na dinâmica da IL-1β na infecção pelo vírus da dengue

Autores

DOI:

https://doi.org/10.5281/zenodo.13741644

Palavras-chave:

dengue, macrófago, IL-1ß, TGF-ß1, inflamação, imunidade inata

Resumo

Introdução: vários mecanismos patogênicos contribuem para a gravidade da infecção pelo vírus da dengue. Isso inclui citotoxicidade viral, genética do hospedeiro e comorbidades como diabetes e dislipidemia. Pacientes com dengue grave apresentam resposta imune descontrolada com altos níveis de citocinas pró-inflamatórias (TNF, IL-1β, IL-8, IL-6) e quimiocinas, que danificam o endotélio microvascular. As citocinas antiinflamatórias (IL-4, IL-10 e TGF-β1) também estão aumentadas. O papel do TGF-β1 na dengue permanece obscuro. Existem poucos estudos e a maioria deles utiliza dados séricos de pacientes. Estes sugerem efeitos protetores e prejudiciais.

Objetivo: este estudo teve como objetivo avaliar como o TGF-β1 regula a secreção de IL-1β em macrófagos infectados com dengue in vitro, isto foi realizado no laboratório de imunidade inata, na Universidade Autônoma del Estado de Morelos, México.

Método: a linhagem celular THP-1 foi tratada com TGF-β1 recombinante antes ou após a infecção pelo vírus da dengue (DENV). As células foram diferenciadas em macrófagos por PMA. Os dados foram obtidos por meio de ensaios RT-PCR, IFA e ELISA. As variáveis analisadas incluíram a expressão e secreção de IL-1β. A análise estatística incluiu testes t de Student.

Resultados: a RT-PCR mostrou que a expressão de IL-1β foi semelhante nas células pré-tratadas e controle. No entanto, a secreção de IL-1β diminuiu apenas quando as células foram estimuladas com TGF-β1 antes da infecção. O tratamento após a infecção não teve efeito. O bloqueio do receptor TGF-β1 (SB505124) antes do tratamento com TGF-β1 e da infecção por DENV anulou o efeito inibitório do TGF-β1.

Conclusões: esses achados sugerem que o DENV poderia regular a função do TGF-β1 em macrófagos. A regulação negativa da via do TGF-β1 é potencialmente um mecanismo pelo qual o DENV evita a resposta imune. Isso poderia contribuir para a imunopatologia.

Downloads

Não há dados estatísticos.

Referências

1. de Almeida MT, Merighi DGS, Visnardi AB, Boneto Gonçalves CA, Amorim VMF, Ferrari ASA, de Souza AS, Guzzo CR. Latin America’s Dengue Outbreak Poses a Global Health Threat. Viruses [Internet]. 2025 Jan [cited 8 Feb 2025]; 17(1):57. DOI: https://doi.org/10.3390/v17010057

2. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet [Internet]. 2018 Nov [cited 14 May 2024]; 392(10159):1736–88. DOI: https://doi.org/10.1016/s0140-6736(18)32203-7

3. Martinez JD, Garza JAC de la, Cuellar-Barboza A. Going Viral 2019: Zika, Chikungunya, and Dengue. Dermatol Clin [Internet]. 2019 Jan [cited 14 May 2024]; 37(1):95–105. DOI: https://doi.org/10.1016/j.det.2018.07.008

4. Wilder-Smith A, Ooi EE, Horstick O, Wills B. Dengue. Lancet Lond Engl [Internet]. 2019 Jan 26 [cited 14 May 2024]; 393(10169):350–63. DOI: https://doi.org/10.1016/s0140-6736(18)32560-1

5. Pandey N, Jain A, Garg RK, Kumar R, Agrawal OP, Lakshmana Rao PV. Serum levels of IL-8, IFNγ, IL-10, and TGF β and their gene expression levels in severe and non-severe cases of dengue virus infection. Arch Virol [Internet]. 2015 Jun [cited 14 May 2024]; 160(6):1463–75. DOI: https://doi.org/10.1007/s00705-015-2410-6

6. Patra G, Mallik S, Saha B, Mukhopadhyay S. Assessment of chemokine and cytokine signatures in patients with dengue infection: A hospital-based study in Kolkata, India. Acta Trop [Internet]. 2019 Feb [cited 14 May 2024]; 190:73–9. DOI: https://doi.org/10.1016/j.actatropica.2018.10.017

7. Soo KM, Khalid B, Ching SM, Tham CL, Basir R, Chee HY. Meta-analysis of biomarkers for severe dengue infections. PeerJ [Internet]. 2017 Sep [cited 14 May 2024]; 5:e3589. DOI: https://doi.org/10.7717/peerj.3589

8. Srikiatkhachorn A, Mathew A, Rothman AL. Immune-mediated cytokine storm and its role in severe dengue. Semin Immunopathol [Internet]. 2017 Jul [cited 14 May 2024]; 39(5):563–74. DOI: https://doi.org/10.1007/s00281-017-0625-1

9. Palmal S, Kundu S, Ganguly S, Dey JB, Sandhukhan S, Pattanayak AK. Immunologic Crosstalk and Host-Specific Immune Signature Associated with Dengue. ACS Omega [Internet]. 2024 Aug [cited 30 Dic 2024]; 9(36):37418–29. DOI: https://doi.org/10.1021/acsomega.4c02506

10. St. John AL, Rathore APS. Adaptive immune responses to primary and secondary dengue virus infections. Nat Rev Immunol [Internet]. 2019 Apr [cited 14 May 2024]; 19(4):218–30. DOI: https://doi.org/10.1038/s41577-019-0123-x

11. Bozza FA, Cruz OG, Zagne SM, Azeredo EL, Nogueira RM, Assis EF, Bozza PT, Kubelka CF. Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity. BMC Infect Dis [Internet]. 2008 Jun [cited 14 May 2024]; 8:86. DOI: https://doi.org/10.1186/1471-2334-8-86

12. Chaturvedi UC, Nagar R, Shrivastava R. Macrophage and dengue virus: friend or foe? Indian J Med Res [Internet]. 2006 Jul [cited 14 May 2024]; 124(1):23–40. Disponible en: https://pubmed.ncbi.nlm.nih.gov/16926454/

13. Huyen TB, Trieu HT, Vuong NL, Minh Nguyet N, Tam DTH, McBride A, et al. Anakinra for dengue patients with hyperinflammation: protocol for a randomized double-blind placebo-controlled trial. Wellcome Open Res [Internet]. 2024 [cited 30 Dic 2024]; 9:689. DOI: https://doi.org/10.12688/wellcomeopenres.21017.1

14. Agarwal R, Elbishbishi EA, Chaturvedi UC, Nagar R, Mustafa AS. Profile of transforming growth factor-beta 1 in patients with dengue haemorrhagic fever. Int J Exp Pathol [Internet]. 1999 Jun [cited 14 May 2024]; 80(3):143–9. DOI: https://doi.org/10.1046/j.1365-2613.1999.00107.x

15. Laur F, Murgue B, Deparis X, Roche C, Cassar O, Chungue E. Plasma levels of tumour necrosis factor a and transforming growth factor β-1 in children with dengue 2 virus infection in French Polynesia. Trans R Soc Trop Med Hyg [Internet]. 1998 [cited 14 May 2024]; 92(6):654–6. DOI: https://doi.org/10.1016/s0035-9203(98)90800-8

16. Perez AB, Sierra B, Garcia G, Aguirre E, Babel N, Alvarez M, et al. Tumor necrosis factor-alpha, transforming growth factor-β1, and interleukin-10 gene polymorphisms: implication in protection or susceptibility to dengue hemorrhagic fever. Hum Immunol [Internet]. 2010 Nov [cited 14 May 2024]; 71(11):1135–40. DOI: https://doi.org/10.1016/j.humimm.2010.08.004

17. Yeo ASL, Azhar NA, Yeow W, Talbot CC, Khan MA, Shankar EM, et al. Lack of clinical manifestations in asymptomatic dengue infection is attributed to broad down-regulation and selective up-regulation of host defence response genes. PloS One [Internet]. 2014 [cited 14 May 2024]; 9(4):e92240. DOI: https://doi.org/10.1371/journal.pone.0092240

18. Tillu H, Tripathy AS, Reshmi PV, Cecilia D. Altered profile of regulatory T cells and associated cytokines in mild and moderate dengue. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol [Internet]. 2016 Mar [cited 14 May 2024]; 35(3):453–61. DOI: https://doi.org/10.1007/s10096-015-2561-0

19. Lee YS, Kim JH, Kim ST, Kwon JY, Hong S, Kim SJ, et al. Smad7 and Smad6 bind to discrete regions of Pellino-1 via their MH2 domains to mediate TGF-beta1-induced negative regulation of IL-1R/TLR signaling. Biochem Biophys Res Commun [Internet]. 2010 Mar 19 [cited 14 May 2024]; 393(4):836–43. DOI: https://doi.org/10.1016/j.bbrc.2010.02.094

20. Imai K, Takeshita A, Hanazawa S. Transforming Growth Factor-β Inhibits Lipopolysaccharide-Stimulated Expression of Inflammatory Cytokines in Mouse Macrophages through Downregulation of Activation Protein 1 and CD14 Receptor Expression. Infect Immun [Internet]. 2000 May [cited 14 May 2024]; 68(5):2418–23. DOI: https://doi.org/10.1128/iai.68.5.2418-2423.2000

21. Tsatsanis C, Androulidaki A, Dermitzaki E, Gravanis A, Margioris AN. Corticotropin releasing factor receptor 1 (CRF1) and CRF2 agonists exert an anti-inflammatory effect during the early phase of inflammation suppressing LPS-induced TNF-alpha release from macrophages via induction of COX-2 and PGE2. J Cell Physiol [Internet]. 2007 [cited 14 May 2024]; 210(3):774–83. DOI: https://doi.org/10.1002/jcp.20900

22. Pang T, Cardosa MJ, Guzman MG. Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS). Immunol Cell Biol [Internet]. 2007 Jan [cited 14 May 2024]; 85(1):43–5. DOI: https://doi.org/10.1038/sj.icb.7100008

23. Yacoub S, Wills B. Predicting outcome from dengue. BMC Med [Internet]. 2014 Dec [cited 14 May 2024]; 12(1):1–10. DOI: https://doi.org/10.1186/s12916-014-0147-9

24. John DV, Lin YS, Perng GC. Biomarkers of severe dengue disease – a review. J Biomed Sci [Internet]. 2015 Oct [cited 14 May 2024]; 22:83. DOI: https://doi.org/10.1186/s12929-015-0191-6

25. Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol [Internet]. 1998 [cited 14 May 2024]; 16:137–61. DOI: https://doi.org/10.1146/annurev.immunol.16.1.137

26. Djamiatun K, Faradz SMH, Setiati TE, Netea MG, van der Ven AJAM, Dolmans WMV. Increase of plasminogen activator inhibitor-1 and decrease of transforming growth factor-b1 in children with dengue haemorrhagic fever in Indonesia. J Trop Pediatr [Internet]. 2011 Dec [cited 14 May 2024]; 57(6):424–32. DOI: https://doi.org/10.1093/tropej/fmq122

27. Sierra B, Perez AB, Vogt K, Garcia G, Schmolke K, Aguirre E, et al. Secondary heterologous dengue infection risk: Disequilibrium between immune regulation and inflammation? Cell Immunol [Internet]. 2010 [cited 14 May 2024]; 262(2):134–40. DOI: https://doi.org/10.1016/j.cellimm.2010.02.005

28. Chen W, Ten Dijke P. Immunoregulation by members of the TGFβ superfamily. Nat Rev Immunol [Internet]. 2016 Nov [cited 14 May 2024]; 16(12):723–40. DOI: https://doi.org/10.1038/nri.2016.112

29. Li MO, Flavell RA. TGF-beta, T-cell tolerance and immunotherapy of autoimmune diseases and cancer. Expert Rev Clin Immunol [Internet]. 2006 Mar [cited 14 May 2024]; 2(2):257–65. DOI: https://doi.org/10.1586/1744666x.2.2.257

30. Travis MA, Sheppard D. TGF-β activation and function in immunity. Annu Rev Immunol [Internet]. 2014 [cited 14 May 2024]; 32:51–82. DOI: https://doi.org/10.1146/annurev-immunol-032713-120257

31. Callaway JB, Smith SA, McKinnon KP, de Silva AM, Crowe JE, Ting JPY. Spleen Tyrosine Kinase (Syk) Mediates IL-1β Induction by Primary Human Monocytes during Antibody-enhanced Dengue Virus Infection. J Biol Chem [Internet]. 2015 Jul 10 [cited 14 May 2024]; 290(28):17306–20. DOI: https://doi.org/10.1074/jbc.m115.664136

32. Kwon YJ, Heo J, Wong HEE, Cruz DJM, Velumani S, da Silva CT, et al. Kinome siRNA screen identifies novel cell-type specific dengue host target genes. Antiviral Res [Internet]. 2014 Oct [cited 14 May 2024]; 110:20–30. DOI: https://doi.org/10.1016/j.antiviral.2014.07.006

33. Brough D, Pelegrin P, Nickel W. An emerging case for membrane pore formation as a common mechanism for the unconventional secretion of FGF2 and IL-1β. J Cell Sci [Internet]. 2017 Oct [cited 14 May 2024]; 130(19):3197–202. DOI: https://doi.org/10.1242/jcs.204206

34. New J, Thomas SM. Autophagy-dependent secretion: mechanism, factors secreted, and disease implications. Autophagy [Internet]. 2019 Oct [cited 14 May 2024]; 15(10):1682–93. DOI: https://doi.org/10.1080/15548627.2019.1596479

35. Wu MF, Chen ST, Yang AH, Lin WW, Lin YL, Chen NJ, et al. CLEC5A is critical for dengue virus-induced inflammasome activation in human macrophages. Blood [Internet]. 2013 Jan 3 [cited 14 May 2024]; 121(1):95–106. DOI: https://doi.org/10.1182/blood-2012-05-430090

36. Tan TY, Chu JJH. Dengue virus-infected human monocytes trigger late activation of caspase-1, which mediates pro-inflammatory IL-1β secretion and pyroptosis. J Gen Virol [Internet]. 2013 Oct [cited 14 May 2024]; 94(Pt 10):2215–20. DOI: https://doi.org/10.1099/vir.0.055277-0

37. Cheung KT, Sze DMY, Chan KH, Leung PHM. Involvement of caspase-4 in IL-1 beta production and pyroptosis in human macrophages during dengue virus infection. Immunobiology [Internet]. 2018 [cited 14 May 2024]; 223(4–5):356–64. DOI: https://doi.org/10.1016/j.imbio.2017.10.044

38. Netea MG, Veerdonk FL van de, Meer JWM van der, Dinarello CA, Joosten LAB. Inflammasome-Independent Regulation of IL-1-Family Cytokines. Annu Rev Immunol [Internet]. 2015 Mar [cited 14 May 2024]; 33:49–77.DOI: https://doi.org/10.1146/annurev-immunol-032414-112306

39. Harris J. Autophagy and cytokines. Cytokine [Internet]. 2011 Nov [cited 14 May 2024]; 56(2):140–4. DOI: https://doi.org/10.1016/j.cyto.2011.08.022

40. Harris J. Autophagy and IL-1 Family Cytokines. Front Immunol [Internet]. 2013 Apr 5 [cited 14 May 2024]; 4:83. DOI: https://doi.org/10.3389/fimmu.2013.00083

41. Datan E, Roy SG, Germain G, Zali N, McLean JE, Golshan G, et al. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell Death Dis [Internet]. 2016 Mar [cited 14 May 2024]; 7(3):e2127–e2127. DOI: https://doi.org/10.1038/cddis.2015.409

42. Heaton NS, Randall G. Dengue virus and autophagy. Viruses [Internet]. 2011 Aug [cited 14 May 2024]; 3(8):1332–41. DOI: https://doi.org/10.3390/v3081332

Downloads

Publicado

2025-03-20

Como Citar

1.
Serrato Salas J, Ramírez Agüero B, Montiel Hernández JL, González Christen J. Modulação imune de macrófagos: influência do TGF-β1 na dinâmica da IL-1β na infecção pelo vírus da dengue. Rev Inf Cient [Internet]. 20º de março de 2025 [citado 4º de abril de 2025];104:e4791. Disponível em: https://revinfcientifica.sld.cu/index.php/ric/article/view/4791

Edição

Seção

Artigos Originais